Symbol Chain

Object of the game

- Obtain points through completing the symbol sequences on the tiles you play

Components

- $17 x 7$ board (comes in 6 pieces)
- 144 playing tiles (6 sets of 36)
- 9 starting tiles (marked with an 'S')

Setup

- Place the board in the center of the table
- Have each player select a set of playing tiles to use throughout the game (player 1, 2, 3, or 4)
- Sort the tiles into 5 stacks based on the length of the sequence written on each tile
- place the 2 and 3 sequence stacks face down
- place the 4,5 , and 6 sequence stacks face up
- place these 5 stacks $(2,3,4,5$, and 6$)$ in a row infront of you
- Place the 9 starting tiles face up on any spot on the board
- the 3 symbols are triangle, circle, and cross (x)
- the 3 colours are black, white, and gray
- this gives 9 symbol/colour combinations
- Ensure all players have seen the symbols on the tiles and then turn them face down
- Select a player to keep track of the score or have players keep their own score

Play

- Select a starting player
- That player chooses a tile from the top of one of their 5 stacks and places it face-up on the edge of the gameboard
- The player then attempts to flip over tiles on the gameboard, one at a time, to complete the sequence written at the top of their selected tile
- Each correct tile flipped over that is either a starting tile or a tile placed by another player gives the current player 1 point
- Each correct tile flipped over that is a tile previously placed by the current player gives that player 0 points instead of 1 point, but the player may continue to complete their sequence
- If the player flips an incorrect tile when attempting to complete a sequence the player's turn ends immeadiately (all points from earlier correct flips still count)
- discard the tile that the player had selected from their 5 stacks
- flip, face-down, any tiles that had been flipped over during that player's turn
- If the player successfully finishes the sequence, in the correct order, they can place their selected tile on the board
- place the tile at a location with a face-down tile
- reveal the identity of the face-down tile and move it to an empty spot on the board
- flip, face-down, any tiles that had been flipped over during that player's turn
- The current player's turn is over and the player to his/her left selects a tile from one of their 5 stacks to begin their turn

End of Game

- The game ends immeadiately when the last position on the board has been filled or either the 2 or 3 stack has been exhausted by more than 1 player
- Flip over all of the tiles on the board
- Add 2 points to each player's score for each tile that they have placed on the board
- The player with the most points wins

Comments

- Any thoughts, ideas, or suggestions? Contact me on Boardgamegeek.com my username is Meldrum.

Example of Play

Player 1 chooses to play a tile from his 2 stack. The player flips over the starting tile black circle and is awarded 1 point. Next he flips over his own player 1 white triangle and does not receive points but he does complete the sequence. The player can now place his current tile on the board. He flips over a face-down tile (player 3 white circle) moves it to an empty space and places his grey X where the white circle was previously. All the tiles are then turned face-down and the next player's turn begins.

Game Board Parts (6) $\triangle \checkmark$

NIVH○ TOGWXS

Tiles - Starting (9), Playing (144)

		$\begin{gathered} \rightarrow \approx 0 \triangle \Delta \Delta \\ 1 \end{gathered}$
	$\rightarrow \mathbf{~}$ 1	$\rightarrow \approx 00 \Delta$ 1

		AOM
$\rightarrow \star$ 1	$\rightarrow \triangle \otimes \Delta$ 1	$\begin{gathered} \rightarrow \Delta \odot \Delta \\ \\ 1 / 2 \end{gathered}$

	$\underbrace{\rightarrow \Delta \mathbb{Z}}_{1}$	$\underbrace{\rightarrow \Delta \approx 0}_{1}$
	$\underbrace{\rightarrow 0 \approx 0 \Delta}_{1}$	
1	$\rightarrow \aleph \Delta$ 1	$\rightarrow \triangle \mathrm{O} \triangle \mathrm{O}$

	$\begin{array}{r} \rightarrow \approx \triangle \\ 2 \\ \\ \hline \end{array}$	$\begin{array}{r} \rightarrow 00 \\ 2 \end{array}$
$\begin{array}{r} \rightarrow \Delta X \\ 2 \end{array}$		$\begin{gathered} \rightarrow O \triangle Z O Q \triangle \\ 2 \\ 2 \end{gathered}$
$\begin{gathered} \rightarrow \Delta \triangle \triangle O \\ 2 \end{gathered}$	$\begin{gathered} \rightarrow 0 \\ 2 \end{gathered}$	$\rightarrow \triangle \mathrm{O} \approx$ 2
	$\rightarrow \mathbb{N}$ 2	$\rightarrow \text { © }$ 2

SN	Cosis	
Coses	cos	(xaz
(\rightarrow	$\rightarrow \mathbf{O} \triangle \Delta$ 2
$\rightarrow \odot \Delta \star$ 2	$\rightarrow 0 \Delta$ 2	$\|\rightarrow \Delta \triangle \otimes 00\|$ 2

$\begin{array}{r} \rightarrow \Delta=0 \\ 3 \\ 3 \end{array}$	$\begin{gathered} \rightarrow 0 \bigcirc \\ \\ \hline \end{gathered}$	$\begin{array}{r} \rightarrow \Delta \Delta \Delta \\ 3 \\ 3 \end{array}$
$\begin{aligned} & \rightarrow \Delta \Delta \\ & \hline \end{aligned}$	$\begin{gathered} \rightarrow O Q \triangle \\ 3 \\ 3 \end{gathered}$	$\rightarrow 凶 凶 \Delta$ 3
$\begin{gathered} \rightarrow 0 \triangle O \Delta \\ 3 \end{gathered}$	$\rightarrow \Delta($ 3	$\rightarrow \Delta \Delta$ 3
$\rightarrow O \Delta \mathbb{X}$ 3	$\rightarrow \bigcirc \mathbf{\triangle} \triangle \mathbf{O}$ 3	$\rightarrow \triangle O O X$ 3

		\rightarrow
$\begin{gathered} \rightarrow 0 \triangle \\ \\ \\ \\ \hline \end{gathered}$		$\rightarrow \Delta \mathbb{X}$ 3
$\rightarrow \triangle \Delta O$ 3	$\rightarrow \mathbb{x}$ 3	(SOAOO

$\rightarrow \Delta \triangle$ O	$\rightarrow \mathbb{\otimes O \Delta}$	$\rightarrow \mathbb{X}$
S_{3}^{2}		
	$\cos _{3}^{\rightarrow O x \Delta x \triangle}$	An
COA	(x)	$\rightarrow \Delta \bigcirc \bigcirc$ 3
\rightarrow	$\rightarrow \Delta \triangle O$ 3	$\rightarrow \bigcirc \mathbf{\Delta}$ 3

$\begin{array}{r} \rightarrow \Delta \Delta O \\ 4 \end{array}$	$\begin{aligned} & \rightarrow \Delta x \\ & 4 \\ & 4 \end{aligned}$	$\begin{array}{r} 1 \rightarrow 0 \\ 4 \\ 4 \end{array}$
	$\begin{gathered} \rightarrow \Delta \Delta \\ 4 \end{gathered}$	$\rightarrow 刃 \Delta O \triangle$ 4
$\rightarrow \bigcirc \mathbb{X}$ 4	$\rightarrow \mathbf{O} \Delta \mathbf{\Delta}$ 4	$\rightarrow \Delta \mathbb{X}$ 4
$\begin{array}{\|cc} \hline \rightarrow & O X \\ & 4 \end{array}$	$\rightarrow \bigcirc \Delta \Delta \Delta$ 4	$\rightarrow \mathbb{X O} \triangle \triangle$ 4

		(/A
	$\begin{gathered} \rightarrow \odot \triangle O \triangle \\ 4 \end{gathered}$	

$\rightarrow \Delta \triangle \triangle O$	coses	Cos
Cons	\rightarrow	(TOA
Cox	$\begin{gathered} \rightarrow \mathbb{N O} \triangle \\ 4 \\ 4 \\ 4 \end{gathered}$	$\rightarrow O \Delta$ 4
\rightarrow	$\rightarrow \Delta \odot \Delta$ 4	$\rightarrow \Delta \Delta$ 4

